
srcML a Retrospective:
The Trials and Tribulations of Building Real

Software in an Academic Environment

Professor Jonathan I. Maletic
jmaletic@kent.edu

Department of Computer Science

Kent State University 

Ohio, USA

SANER 2020 Keynote

SANER 2020 2

srcML (sõrs em el), n. 1. an infrastructure for the
exploration, analysis, and manipulation of source
code. 2. an XML format for source code. 3. a
lightweight, highly scalable, robust, multi-
language parsing tool to convert source code into
srcML. 4. an open source software application
licensed under GPL.

SANER 2020

srcML Infrastructure

3

TOOLS
Tools provided and custom built are used to
query, extract data, and transform source
code.

MODELS
External models of the code such as PDG,
UML, call graphs can be built in XML

XML
The full range of XML technologies can be
applied to the srcML format.

SRCML
The srcml CLI is used to convert entire
projects from and to source code and the
srcML format. Languages supported include
C, C++, Java, and C#.

SRCML FORMAT
The srcML format represents source code with
all original information intact, including
whitespace, comments, and preprocessing
statements.

SUPPORT
A multi-university team currently supports the
infrastructure.

SANER 2020

What does srcML do?
• Convert source code to srcML

• Convert srcML back to original source, with

no loss of text

• Query code using XML query languages,

such as XPath

• Transform source code while in srcML

format

• src srcML transform srcML src

4

SANER 2020

The srcML Format
• A document-oriented XML format that

explicitly embeds structural information
directly into the source text 

• Markup is selective at a high Abstract
Syntax Tree (AST) level

• no sub-expressions 

5

SANER 2020

Source Code

#include "rotate.h"

// rotate three values
void rotate(int& n1, int& n2, int& n3)
{
 // copy original values
 int tn1 = n1, tn2 = n2, tn3 = n3;

 // move
 n1 = tn3;
 n2 = tn1;
 n3 = tn2;
}

6

SANER 2020

srcML

<unit xmlns="http://www.srcML.org/srcML/src" xmlns:cpp="http://www.srcML.org/srcML/cpp"
revision=“1.0.0" language="C" filename="rotate.c">
<cpp:include>#<cpp:directive>include</cpp:directive> <cpp:file>"rotate.h"</cpp:file>  
</cpp:include>

<comment type="line">// rotate three values</comment>
<function><type>void</type> <name>rotate</name>
<parameter_list>(<param><type>int&</type> <name>n1</name></param>,
<param><type>int&</type> <name>n2</name></param>,
<param><type>int&</type> <name>n3</name></param>)</parameter_list>
<block>{
 <comment type="line">// copy original values</comment>
 <decl_stmt><decl><type><name>int</name></type> <name>tn1</name> =<init> <expr><name>n1</
name></expr></init>, <name>tn2</name> =<init> <expr><name>n2</name></expr></init>, <name>tn3</
name> =<init> <expr><name>n3</name></expr></init></decl>;</decl_stmt>

 <comment type="line">// move</comment>
 <expr_stmt><expr><name>n1</name> = <name>tn3</name></expr>;</expr_stmt>
 <expr_stmt><expr><name>n2</name> = <name>tn1</name></expr>;</expr_stmt>
 <expr_stmt><expr><name>n3</name> = <name>tn2</name></expr>;</expr_stmt>
}</block></function>
</unit>

7

SANER 2020

srcML Markup
• All original text preserved, including white

space, comments, special characters 

• Syntactic structure wrapped with tags,
making them addressable 

• Comments marked in place 

• Pre-processor statements unprocessed

8

SANER 2020

Implementation
• Parsing technology in C++ with ANTLR

• Uses libxml2, libarchive, boost

• Current speed: ~92 KLOC/second

• srcML to text: ~4.5 (~1.4 compressed)

• Allows for various input sources

• Directories, source archives (tar.gz, etc)

9

SANER 2020

srcML Parser
• Custom parser based on modifications to

ANTLR parser framework

• Comments and white space in a separate

token stream. C-Preprocessor in a separate
token stream

• Parser produces token stream with XML
tags

• Highly efficient and scalable

10

SANER 2020

Language Support

• C11, K&R C

• C++14, Qt extensions

• Java SE 8

• C# Standard ECMA-334

• OpenMP pragmas

11

srcML Elements
Statements

<if_stmt>,<if>,<else>,<elseif><while>,<for>,<do>,<break>,<continue>,<return>,<switch>, 
<case>,<default><block>,<label>,<goto>,<empty_stmt>,<foreach>,<fixed>,<block>,<using>, 
<unsafe>,<assert>

Specifiers <specifier>,<extern>

Declarations, Definitions, and Initializations <decl_stmt>,<decl>,<function_decl>,<function>,<modifier>,<typedef><init>,<range>,<literal>, 
<lambda>,<using>,<namespace>

Classes, Struct, Union, Enum, Interfaces
<struct_decl>,<struct>,<union_decl>,<union>,<enum>,<class>,<class_decl>,<constructor>, 
<constructor_decl>,<super>,<destructor>,<annotation>,<extends>,<implements>,<static>, 
<protected>,<private>,<public>

Expressions <call>,<name>,<ternary>,<expr>,<operator>,<argument>,<argument_list>,<parameter> 
<parameter_list>,<name>

Generics <decl>,<class>,<function>,<specifier>,<where>,<name>,<template>,<typename>,<modifier>

Exceptions <throw>,<throws>,<try>,<catch>,<finally>

LINQ <from>,<where>,<select>,<group>,<orderby>,<join>,<let>

Other (C-based) <operator>,<sizeof>,<alignas>,<alignof>,<atomic>,<generic_selection>,<specifier>,<asm>

Other (C#-based) <typeof>,<default>,<checked>,<unchecked>,<sizeof>,<attribute>

Other (C++-based) <call>,<typeid>,<noexcept>,<decltype>

Other (Java-based) <import>,<package>,<synchronized>

SANER 2020

srcML 1.0
• Client srcml with C API libsrcml 

• Freeze and version srcML tags (1.0) 

• Cross-linked documentation 

• Multithreaded translation for large projects:

%srcml linux-3.16.tar.xz –o linux-3.16.xml.gz

• Macbook Air: ~7 minutes

• Mac Pro 6 Core: ~2 minutes

13

SANER 2020

Using srcML
• foo.cpp srcml + XPath

• foo.cpp srcml foo.cpp.xml

• XML Tools (e.g., XSLT, XPath)

• application code + libxml2

• srcSAX framework

• foo.cpp application code + libsrcml

• XML Tools (e.g., XSLT, XPath)

• application code + libxml2

• srcSAX framework

14

SANER 2020

Applications of srcML

• Static analysis: slicing, pointer analysis, PDG, etc.

• Fact extraction, custom profiling

• Computing metrics

• Refactoring, transformation

• Syntactic differencing

• Reverse engineering UML class diagrams, method/class

stereotypes

• C++ preprocessor analysis

• Reverse engineering C++ template parameter constraints

15

SANER 2020

srcML Team

16

• Michael Collard

• Drew Guarnera

• Christian Newman

• Michael Decker

• Brian Bartman

• Heather Guarnera

• Mike Weyandt

• Vlas Zyrianov

SANER 2020

17

SANER 2020

Downloads

• Over 7000 downloads of executables since 2015

18

0
200

400

600
800

1000
1200

1400
1600

1800

2000

2015 2016 2017 2018 2019

Downloads

SANER 2020

srcML Road Map

19

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

In the Beginning
• circa 2000 Memphis, TN

• Doing research on program comprehension,
software evolution with some student (Andi Marcus)

• Using LSI on source code, visualization, reverse
engineering

• Need to do program analysis and fact extraction

• Large code bases

20

SANER 2020

Extraction via Parsing
• Must parse the source code (compiler)

• The result is an abstract syntax tree and
symbol table

• Very difficult to map AST (data) back to original
source code (document)

• Programmers care about code, not the AST

• Difficulty: C++, macros, templates

21

SANER 2020

Our Options
• Use someone’s tool

• May/May not work

• May/May not be supported

• Old platform

• Hack gcc

• Build your own specialized parser

22

SANER 2020

A Good Idea!
• Came up with the idea insert AST information in

the form of XML markup into the source code

• srcML was born

• Just need a parser!

• Came up with an initial tag set, proof of concept

• Andi Marcus and Tony Colston

23

SANER 2020

ICSE/IWPC ‘01

24

• CPPX, GXL, JavaML,
Columbus, TXL, etc.

SANER 2020

srcML Road Map

25

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020 26

Memphis

KSU

Fall 2001
Moved to KSU

SANER 2020

A Prototype
• circa 2001 Kent, OH

• Met this guy (Michael Collard) who had a keen interest in

document formats (XML) and differencing. Luck has it
he happened to be a great developer

• Started building a prototype parser and more formal tag
set

• IWPC ’02 paper (accepted as a short)

• Susan Sim - fact extractor benchmark

• DocEng’02

27

SANER 2020

IWPC ‘03
• “An XML-Based Lightweight C++ Fact Extractor”

• Improved the prototype

• Huzefa Kagdi - MS Thesis (using island

grammars)

28

Portland 2003 - Hausi dancing

SANER 2020

srcML Road Map

29

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

First “Release”
• Based on the work from the IWPC’03 paper we had an

initial version of srcML that could be used (by folks
outside our our group)

• Released “version 2” in 2004, Linux & Windows builds

• Posted this on the lab website (word of mouth)

• Early users: Giulio Antoniol, Paolo Tonella, Andy Stefik,
a group at ETH (XWeaver)

30

SANER 2020

Reviewer 2?
• IWPC ’02 paper - submitted as long, accepted

as short

31

SANER 2020

Reviewer 2?
• IWPC ’02 paper - submitted as long, accepted

as short

32

“I didn’t think you could
build it, but now I’m
using it!”

SANER 2020

Adoption
• Seriously thought about adoption (ACSE’04 with ICSE)

• Adoption of the approach (srcML format)

• Document view (vs data view), preservation of source
code

• Lightweight markup, efficient (size, focus)

• Adoption of the parser (usability)

• Fast, flexible, scalable, portability, robust,
interoperable

33

SANER 2020

Industry Interest
• circa Oct. 2005

• Got a call from a guy. Gord. VP Corporate

Development at Tira Wireless (Toronto).

• Commercial license to use srcML within their
product.

• Automatic porting of applications/content to various
cell phone hardware (think flip phones)

• Used heavily for 3 or 4 years

34

SANER 2020

Licensing
• We needed to get a bit more serious about

licensing

• GPL

• Protect the IP

• Easily adopted by researchers, students,

practitioners using it internally

• Commercial one off licensing for products

35

SANER 2020

Release & Support
• We needed to get a bit more serious about

releases and maintenance

• Supported both Linux and Windows at the

time

• Provided executables as compile/building

was difficult

• Bug reporting via email (later Google form)

36

SANER 2020

srcML Road Map

37

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

Industry Funding
• circa 2006

• Met this guy (Brian Robinson) who worked at ABB Inc. (Brian is now at

Rockwell Automation)

• Gave talk at ABB (Cleveland) in 2006

• He saw the potential to use srcML for analysis tasks at ABB

• His group moved to Raleigh-Durham (from Cleveland) around that time

which slowed things down

• 2008 received the first installment of 5 years of funding (~$60K/year)

mainly to support srcML and associated tools

• Dave Shepherd joined ABB and used srcML in his Sando MSVS plugin.

38

SANER 2020

srcML Road Map

39

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

Leveraging srcML
• ICSM’04 - Syntactic differencing with Collard

• SET’04 - Refactoring using XSLT with Collard

• WCRE’05 - Reverse engineering UML class models with Andrew Sutton

• TEFSE’05 - Traceability with Bonita Sharif

• ICSM’06 - Reverse engineering method stereotypes with Natalia Dragan

• SCAM’06 - Factoring differences with Collard, Huzefa Kagdi

• ICSM’07 - C preprocessor analysis with Sutton

• ICSM’08 - C++ template analysis with Sutton

• ICPC’09 - Code to design traceability with Maen Hammad

• ICSM’10 - Reverse engineering class stereotypes with Dragan, Collard

• ICSM’10 - Transformations for large scale adaptive changes with Collard, Robinson

40

SANER 2020

Others using srcML
• Birrer ’04 - XWeaver aspect weaver

• Binkley ’07 - Identifier analysis

• Stefik ’07 - Accessibility (for the blind)

• Hill ’07 - Program exploration

• Marcus ’08 - Metrics computation

• Tonella, Abebe ’08 - code quality

• Abebe ’09 - Source code vocabulary analysis

• Cleland-Huang ’09 - Traceability

• Jens ’09 - Quality assurance

• Corazza ’11 - Lexical information analysis

• Gethers ’12 - Information retrieval and traceability

41

SANER 2020

SCAM’11
• "Lightweight Transformation and Fact Extraction with the srcML

Toolkit” - Collard, Michael Decker, Maletic

• src2srcml and srcml2src (with CLI support of XPath)

• New release with Java support

• Documented tag set

• To srcML at 25 KLOC/sec and back to src at 250 KLOC/sec

• Linux kernel as test suite

• Examples of using XPath, XSLT for fact extraction and
transformation problems

42

SANER 2020

srcML Road Map

43

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

MIP
• ICPC 2013 - San Francisco with ICSE

• Received Most Influential Paper award for our IWPC

2003 (Portland) paper on srcML

• Ric Holt: “Why did srcML survive when CPPX didn’t?”

44

SANER 2020

NSF CRI
• CISE Research Infrastructure

• Program specifically aimed at supporting the construction/
enhancement of infrastructure to support research in computer
science

• Andi Marcus: “hey dude you should write a proposal on srcML
and submit it to this new NSF program, it’s perfect for you”

• Submitted in 2011 but wasn’t funded. Did get some nice
reviews and suggestions

• Submitted in 2012 and got funded ($800K) - Collaboration
between KSU and UAkron. CNS 13-0592/05217

45

SANER 2020

srcML Road Map

46

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

2014-18: The Good Years
• What did this level of funding get us?

• Full time developer! Yeah!

• Building (usable) software in an academic setting is difficult

• Students come and go (developer churn)

• Objectives are not aligned with creating long lived or high quality

software

• Pressures of publishing and funding vs building a tool

• Tool building is a long game (that may or may not pay off)

• The additional engineering involved does not result in publications

47

SANER 2020

A Bit of Luck
• A good graduate student does not alway

equate to a great developer

• All of the people involved (actual coding) just

happened to be really good developers:
Collard, Decker, Guarnera, Newman, Bartman,
Kagdi

• Needed compiler experience so hard to find
outside of your current graduate students

48

SANER 2020

Developer
• Need to manage them

• Trade-off of full time developer is that they don’t get
much research done and don’t make much progress
on their degree

• Decker and Bartman both spend a year as full time
developers and then went back to a RA position

• After two years of full time development the project
had made significant progress and RAs were adequate
to keep things moving

49

SANER 2020

Building Real Software
• Moved to GitHub for version control and issue tracking

• Dedicated web site (srcML.org)

• Team collaboration via Discord (why not Slack?)

• CMake build system, CPack to create installers

• Docker/Docker Compose to create Linux packages,
installers, and automate testing (Ubuntu, Fedora, CentOS,
OpenSUSE)

• CircleCI for continuous integration

• Windows and macOS installers

50

SANER 2020

Documentation
• Big expense but critical

• Language elements for each language

• Client documentation

• API documentation

• Tutorials

• Technical Briefings ICSME’14, ICSE’15

51

SANER 2020

Testing
• Unit testing for client (srcml) and API (libsrcml)

• Fine-grained testing of the parser for each

language

• Over 50,000 individual parser tests in 2,564

srcML archives (files)

• Stress testing on large systems (Linux kernel)

across multiple platforms

52

SANER 2020

srcML Road Map

53

2002

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

IWPC’02
Prototype

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

2000

Good
idea!

Funding

SANER 2020

Tools Build on srcML

54

SANER 2020

Tools (beta release)

• srcSAX - a sax2 interface and framework for
using srcML - reduce barriers to adoption

• srcSlice - highly scalable forward static slicer

• srcPtr - lightweight pointer analysis tool

• srcType - static type resolution

• srcUML - Source code to UML class diagrams

• stereoCode - method/class stereotypes

55

SANER 2020

Tools (no release)

• srcDiff - syntactic differencing tool

• srcQL - syntactic aware query language

• srcTL - transformation language

• srcMX - GUI for working with srcML

• Incremental call graph generator

• srcNLP parts of speech tagger for identifiers

56

SANER 2020

Syntactic Differencing

57

SANER 2020

srcDiff [Decker ’17]

• Syntactic differencing approach

• Does not use tree-edit distance

• Set of domain rules to compute difference

• Better mapping of programmer’s view of

change

• JSEP 2019

58

SANER 2020

Example Change

59

Original Modified

/** sets an image */
void setImage(
 Image image
)
{
 widget->
 setImage(
 image
);
}

/** sets an image */
void setImage(
 Image image
)
{
 if (options) {
 options->
 setImage(
 image
);
 }
}

SANER 2020

srcDiff - Unified View

60

Line Diff srcDiff

 void setImage(
 Image image
)
 {
- widget->
+ if (options) {
+ options->
 setImage(
 image
);
 }
+}

void setImage(
 Image image
)
{
 if (options) {
 widgetoptions->
 setImage(
 image
);
 }
}

SANER 2020

srcDiff Process
• Simultaneous preorder traversal on both the original

and modified AST

• Applies a sequence differencing algorithm [Myers ’86] to

the original and modified children (including subtrees)
of a node

• Changed children (delete/insert same position) are
analyzed for further action

• Newer Version

• Nested

• Deleted or Inserted

• Actions determined by set of rules derived from how
programmers change code

61

SANER 2020

Process Example

Original Modified
int foo = 42; extern int foo = ANSWER;

<decl_stmt>

<type> <name> <init>

int

foo = <expr>

<literal>

;

<name>

42

<decl_stmt>

<type> <name> <init>

int

foo = <expr>

<name>

;

<name>

ANSWER

<specifier>

extern

62

SANER 2020

Process Example

Original Modified
int foo = 42; extern int foo = ANSWER;

<decl_stmt>

<type> <name> <init>

int

foo = <expr>

<literal>

;

<name>

42

<decl_stmt>

<type> <name> <init>

int

foo = <expr>

<name>

;

<name>

ANSWER

<specifier>

extern

sequence diff

63

SANER 2020

Process Example

Original Modified
int foo = 42; extern int foo = ANSWER;

<decl_stmt>

<type> <name> <init>

int

foo = <expr>

<literal>

;

<name>

42

<decl_stmt>

<type> <name> <init>

int

foo = <expr>

<name>

;

<name>

ANSWER

<specifier>

extern

insert

change

64

SANER 2020

srcDiff Rules
• Derived from grammar of language, empirical and

statical analysis of software, and experience of several
expert developers

• Categories

• Match

• Convertibility

• Nesting

• Set of Similarity Rules used by each category

65

SANER 2020

Name Match

66

Original Modified
QTextDocument * m_document; QTextDocumentPtr m_document;

srcDiff
QTextDocumentQTextDocumentPtr * m_document;

SANER 2020

Logical Rule

67

Original Modified
int itemCount = d.items.count();
for(int i = itemCount-1; i >= 0; --i)
{
 Item &sbItem = d.items[i];
 if (sbItems.widget() == widget) {
 // several common lines
 }
}

int itemCount = d.items.count() - 1;
while(i >= 0) {
 Item &sbItem = d.items[i];
 if (sbItems.widget() == widget) {
 // several common lines
 }
 --i;
}

srcDiff
int itemCount = d.items.count() - 1;
forwhile(int i = itemCount-1; (i >= 0;) -–i) {
 Item &sbItem = d.items[i];
 if (sbItems.widget() == widget) {
 // several common lines
 }
 --i;
}

SANER 2020

Nesting Rule

68

Original Modified
delete m_document; if (m_frames.isEmpty()) {

 delete m_document;
}
srcDiff

if (m_frames.isEmpty()) {
 delete m_document;
}

SANER 2020

Source Code Querying

69

srcQL[Bartman ’17]

• Query language that is:

• Easy to use

• Efficient and highly scalable

• Syntactically aware

• srcQL is loosely modeled on SQL

• Supports syntactic pattern matching with unification

• Relations for containment, partial ordering, and

functional constraints

• SANER 2017

70

Language
FIND search-context CONTAINS pattern

• Search Context - the syntactic category to be searched upon
as well as the return type

• Pattern - A pattern or XPath expression

• Also supports the operators:

WITHIN
FOLLOWED BY
WHERE
GROUP BY
ORDER BY
FROM

71

Queries - containment

• Find all functions

FIND src:function

• Find all functions that contain a call to new

FIND src:function CONTAINS $T = new $X

• Find all functions with a new and delete

FIND src:function
 CONTAINS $T = new $X
 CONTAINS delete $T

72

Ordering
• Find all functions with a new followed by

delete

FIND src:function
 CONTAINS $T = new $X
 FOLLOWED BY delete $T

• Find all statements that contain a call to new

FIND src:expr_stmt CONTAINS new $X

• Find all if statements

FIND if() { }

73

Complex Query

• Find all functions containing a variable that is
initialized using new and is opened within an
if-statement that checks it and then followed
by that variable being deleted

FIND src:function CONTAINS $X* $I = new $T 
 FOLLOWED BY $I->open() 
 WITHIN if($I) {} 
 FOLLOWED BY delete $I

74

Negation - Set Operations

• Find all functions containing a variable that is initialized using
new and is opened within an if-statement that checks it
and then followed by that variable NOT being deleted

FIND src:function CONTAINS $X* $I = new $T 
 FOLLOWED BY $I->open() 
 WITHIN if($I) {} 

MINUS
FIND src:function CONTAINS $X* $I = new $T 

 FOLLOWED BY $I->open() 
 WITHIN if($I) {} 
 FOLLOWED BY delete $I

75

SANER 2020

Source Transformation

76

srcTL [Newman ’17]

• Transformation language written for srcML

• Natural/simple syntax

• Uses ANTLR to generate Internal

Representation (IR) which is then interpreted
into a sequence of C++ calls

• Relies on static analysis for type resolution,
name generation, etc.

• JSEP 2017
77

SANER 2020

XML & XPath
• Query language for selecting nodes from an

XML document

• Uses file-path-like notation

• Uses srcQL to address specific XML nodes

78

SANER 2020

Maintenance Task

79

SANER 2020

Normalizing Restructurings
• Set of transformations designed to remove

isomorphisms and context [Newman ’17]

• Preserve semantics (resulting code is
isomorphic of original)

• Applied before a user transformation

• Applied selectively

• Similar to refactoring

80

SANER 2020

Example Transformation
FIND $VAR = new $T
 FROM FIND src:function
 CONTAINS $VAR = new $T
 INSERT <try>
 try{
 @xpath:self::*
 }catch(...){
 $VAR = nullptr;
 }
 END AFTER self::*
 REMOVE self::*

81

SANER 2020

Operators

82

Operations Description

FROM [node] Select context node, always first operator

MOVE [node] [specifier] Destroy at source, insert at destination

INSERT [new node] [specifier]? Create new subtree at location

REMOVE [node] Destroy subtree rooted at node

COPY [node] [specifier] Clone subtree, insert at new location

CALL [function Name] Call provided function

REPLACE [node] with [node] Delete original node, insert new node

SANER 2020

Location Specifiers

83

Location Specifiers Corresponding xpath axis

BEFORE [node] preceding-sibling

AFTER [node] following-sibling

UPTO [node] preceding

DOWNTO [node] following

INTO [node] descendant

OUTOF [node] ancestor

TOBEGIN preceding-sibling::*[first()]

TOEND following-sibling::*[last()]

AS [variable] Store the result of an operation as a variable

SANER 2020

Neat Application of srcML

84

SANER 2020

iTrace
• Work with Bonita Sharif

• Want to study developers (using eye trackers)

in a realistic working environment (IDE)

• Eye trackers give you the screen (x, y) a
person is looking at

• Researchers (i.e., grad student) must manually
determine what’s at a particular (x, y)

• Forget about scrolling and switch files

85

SANER 2020

srcML & iTrace
• iTrace automatically maps eye gazes to tokens

• Done using srcML in a post-processing phase

• Maps screen (x, y) to file (line, column), then to

the srcML element (token) using position option

• Result is the token being viewed along with the

syntactic information of the token

• Example: a name (num1) in a condition of an if-

statement within the function foo-bar in file
foo.cpp

86

SANER 2020

srcML Road Map

87

2008

2004

2003

IWPC’03
Better

Prototype

Initial Release
C/C++

09-12

Applications
Bug Fixing
New users

Java

2013 2015 17-19

2014 2016 2020

NSF Funding
MIP ICPC

GitHub
Beta

Version
C#

Docker
Tool Releases

Build Management

Alpha
Version Documentation srcML1.0.0

Funding

Future?

SANER 2020

TODO List
• Continued maintenance and releases

• More language support:

• Domain Specific Languages (DSLs)

• Swift, Python, javascript, etc.

• Proposal to develop a parser generator

• Given a grammar (ANTLR syntax)

• Generate parser to srcML

88

SANER 2020

89
Executables: Windows, macOS, Linux
Issue tracking/source: GitHub

